熔融沉积成型(FDM)工艺过程机制与技术特性

admin 22 2025-10-14 17:53:26 编辑

FDM(Fused Deposition Modeling)中文全称为熔融沉积成型,是目前应用最为广泛的3D打印技术,该技术是美国Stratasys公司于上世纪八十年代末发明。1992年该公司推出世界上第一款基于FDM技术的3D打印机,标志着FDM技术步入商用阶段。2009年FDM关键技术专利到期,各种基于FDM技术的3D打印公司开始大量出现,行业迎来快速发展期。

叠加的魅力 3D打印之熔融沉积成型技术

    对于3D打印而言,材料是关键所在,FDM技术路径涉及的材料主要包括成型材料和支撑材料,根据技术特点,要求成型材料具有熔融温度低、粘度低、粘结性好、收缩率小等特点;支撑材料要求具有能够承受一定的高温、与成型材料不浸润、具有水溶性或者酸溶性、具有较低的熔融 温度、流动性要好等特点。

    FDM应用领域包括概念建模、功能性原型制作、制造加工、最终用途零件制造、修整等方面,涉及汽车、医疗、建筑、娱乐、电子等领域,随着技术的进步,FDM的应用还在不断拓展。

3D打印的电动汽车

3D打印的医疗用具

3D打印的建筑

    FDM技术优点包括成本低、成型材料范围较广、环境污染较小、设备及材料体积较小、原料利用率高、后处理相对简单等;缺点包括成型时间较长、精度低、需要支撑材料等。

    与其他3D打印技术相比,FDM技术不涉及激光、高温、高压等危险环节,同时其体积也较小,是成本相对较低的3D打印技术,能够大量应用于家庭及办公室环境,随着关键技术专利的到期,FDM的各种应用领域还在不断拓展,前景值得期待。

2一、FDM技术概况

一、FDM技术的概况

1、3D打印技术路径概况

    3D打印(3D Printing)技术,是在计算机控制下,基于“增材制造”原理, 立体逐层堆积离散材料,进行零件原型或最终产品的成型与制造的技术。该技术以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,将3D实体变为若干个2D平面,利用激光束、电子束、热熔喷嘴等方式将粉末、热塑性材料等特殊材料进行逐层堆积粘结,最终叠加成型,制造出实体产品。

3D打印工艺原理

    经过几十年的发展,目前已经开发出多种3D打印技术路径,从大类上划分为挤出成型、粒状物料成型、光聚合成型和其他成型几大类,基础成型主要代表技术路径为熔融沉积成型(FDM);粒状物成型技术路径主要包括电子束熔化成型(EBM)、选择性激光烧结(SLS)、三维打印(3DP)、选择性热烧结(SHS)等;光聚合成型主要包括光固化(SLA)、数字光处理(DLP)、聚合物喷射(PI);其他技术包括激光熔覆快速制造技术(LENS)、熔丝制造(FFF)、 融化压模(MEM)、层压板制造(LOM)等。 

3D打印主要实现技术
类型 技术 基本材料
挤出成型 熔融沉积(FDM) 热塑性材料(如PLA、ABS)、共融金属、可食用材料
粒状物料成型 直接金属激光烧结(DMLS) 几乎任何金属合金
电子束熔炼(EBM) 钛合金
选择性热烧结(SHS) 热塑性粉末
选择性激光烧结(SLS) 热塑性塑料、金属粉末、陶瓷粉末
基于粉末床、喷头和石膏的3D打印(PP) 石膏
光聚合成型 光固化成型(SLA) 光敏聚合物
数字光处理 (DLP) 液体树脂

熔融沉积成型FDM工艺一般是热塑性材料,以丝状形态供料

    其中FDM、SLA、LOM、SLS、3DP为主流技术,熔融沉积成型FDM工艺一般是热塑性材料,以丝状形态供料。材料在喷头内被加热熔化,喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速凝固,并与周围的材料凝结;光固化快速成形SLA,又称立体光刻、光成形等,是一种采用激光束逐点扫描液态光敏树脂使之固化的快速成型工艺;叠层实体制造LOM工艺是快速原型技术中具有代表性的技术之一,是基于激光切割薄片材料、由黏结剂黏结各层成形;选择性激光烧结SLS工艺,是采用红外激光作为热源来烧结粉末材料,并以逐层堆积方式成形三维零件的一种快速成形技术;3DP工艺与SLS工艺类似,采用粉末材料成形,如陶瓷粉末,金属粉末。所不同的是材料粉末不是通过烧结连接起来的,而是通过喷头用粘接剂将零件的截面“印刷”在材料粉末上面。

2、FDM发展历程

    熔融沉积成型(FDM,Fused Deposition Modeling)是上世纪八十年代末,由美国Stratasys公司发明的技术,是即光固化快速成型(SLA)和叠层实体 快速成型工艺(LOM)后的另一种应用比较广泛的3D打印技术路径。1992年,Stratasys公司推出了世界上第一台基于FDM技术的3D打印机——“3D 造型者(3D Modeler)”,这也标志着FDM技术步入商用阶段。由于FDM工艺不需要激光系统支持,成型材料多为ABS、PLA等热塑性材料,因此性价比较高,是桌面级3D打印机广泛采用的技术路径。

太尔时代是国内桌面级3D打印机的代表企业

    国内方面,对于FDM技术的研究最早包括清华大学、西安交大、华中科大等几所高效进行,其中,清华大学下属的企业于2000年推出了基于FDM技术的商用3D打印机,近年来也涌现出北京太尔时代、杭州先临三维等多家将3D打印机技术商业化的企业。

    2009年FDM关键技术专利过期,基于FDM的3D打印公司开始大量出现,行业也迎来了快速发展期,相关设备的成本和售价也大幅降低,数据显示,专利到期之后桌面级FDM打印机从超过1万美元下降至几百美元,销售数量也从几千台上升至几万台。

3、FDM工艺原理

     FDM的工作原理是将丝状原料通过送丝部件送入热熔喷头,然后在喷头内被加热融化,在电脑控制下喷头沿着零件截面轮廓和填充轨迹运动,将半流动状态的材料送到指定位置并最终凝固,同时与周围材料粘结,选择性地逐层融化与覆盖,最终形成成品。

FDM成型过程简图

    一套完成的FDM制造系统包括硬件系统、软件系统,硬件系统主要指3D打印机本身,一台利用FDM技术的3D打印机包括工作平台、送丝装置、加热喷头、储丝设备和控制设备五大部分组成。

3二、FDM系统材料

二、FDM系统材料

    材料是3D打印技术的关键所在,对于FDM来说也不例外,FDM系统的材料主要包括成型材料和支撑材料,成型材料主要为热塑性材料,包括ABS、PLA、人造橡胶、石蜡等;支撑材料目前主要为水溶性材料。

1、成型材料

    成型材料是利用FDM技术实现3D打印的载体,对其粘度、熔融温度、粘结性、收缩率等方面均有较高的要求,具体要求如下:

<td style="margin:0px;padding:1px 1px 0px;font-size:15px;border-width:medium 1px 1px medium;border-style:none solid solid none;font-family:宋体;b
FDM技术对成型材料的要求
性能 具体要求

熔融沉积成型(FDM)工艺过程机制与技术特性

上一篇: 文档智能-未来技术的新篇章
下一篇: 三维建模软件功能分类标准研究
相关文章